
Path-Constrained Trajectory Planning for Robot Service Life
Optimization

Chung-Yen Lin1, Yu Zhao1, Masayoshi Tomizuka1, and Wenjie Chen2

Abstract— The return-on-investment (ROI) of robotization is
defined as the difference between the money earned through
robotization and the investment put on the robotic system.
In industrial practice, the ROI is often prioritized over other
factors. There are two ways to help increase the ROI, namely,
1) improving robot productivity and 2) maximizing the robot
service life. In fact, faster robot motion (i.e., higher productivity
as preferred) with larger joint torque would lead to a higher
chance of hardware failure. Therefore, it is of interest to develop
a method that can maximize the robot service life without
sacrificing the productivity. This paper presents a trajectory
re-planning algorithm for this purpose. The idea is to increase
the time duration for some periods of motion to extend the
reducer life, while reduce the time duration for some other
periods of motion to shorten the cycle time. The performance
of the proposed method is evaluated on the FANUC M16iB
robot system. The results show that the method can improve
the expected worst-case service life by approximately 10%.
Computation issues of the proposed algorithm are discussed.

I. INTRODUCTION

In most industrial robotic applications, the two major
criteria, precision and productivity, are often emphasized as
the ultimate objectives. When deploying the robots to the
production lines, however, the return-on-investment (ROI) is
actually one of the most important factors that the robot
end-users need to consider. ROI is a comparison of the
money earned through robotization to the investment on the
robotic system itself. While improving robot performance
(e.g., precision and productivity) can help increase the ROI,
maximizing the robot service life is another major approach
to achieve a larger return. In other words, these three criteria
are the key components of the attractiveness of robotization.
This paper will study how, by motion re-planning, the robot
service life can be prolonged, without sacrificing the robot
precision (i.e., not changing the motion path) or productivity
(i.e., not increasing the cycle time).

Maximizing the robot service life means to enable the
robot working in a reliable operation status without failures
(especially hardware failures) for the longest time. The most
commonly seen failure in current industrial robots is the
reducer failure for robot joints, which limits the overall robot
service life. The reducer life is usually determined by the
joint speed and reducer torque. Therefore, prolonging the
reducer life without constraints would generally increase the

*This work was supported by FANUC Corporation, Japan.
1Chung-Yen Lin, Yu Zhao, and Masayoshi Tomizuka are with De-

partment of Mechanical Engineering, University of California, Berkeley,
CA 94720, USA. Email: {chung yen, yzhao334, tomizuka}
at berkeley.edu

2 Wenjie Chen is with FANUC Corporation, Oshino-mura, Yamanashi-
ken, Japan. Email: wjchen at berkeley.edu

cycle time (as the motion acceleration/speed is reduced)
and decrease the robot utility. However, given a set of
pre-planned motions, it is possible that these motion are
not up to the robot physical limits. Even for the same
speed/acceleration, reducer loads for different postures would
be quite different. That means that it is possible to make a
balance between reducing the robot speed for one period of
motion to increase the reducer life and increasing the robot
speed for some other periods of motion to keep the cycle time
unchanged. Based on this idea, this paper presents a path-
constrained trajectory planning method for optimizing the
robot service life. The performance of the proposed method
is evaluated on the FANUC M16iB robot system.

II. PROBLEM FORMULATION

The problem can be termed as an optimization problem
to achieve the optimal practical trade-off. More specifically,
the optimization problem can be described as follows. Given
a set of continuous motions, re-plan the motions such that
a) the robot service life (particularly the reducer service life)
is maximized, while b) keeping the motion path unchanged,
c) keeping the cycle time not increased, and d) not violating
the other limitations such as motor speed limit, and reducer
speed/torque limit. This section will focus on how to math-
ematically formulate the problem.

A. Reducer Service Life Calculation

As the goal of the proposed trajectory planner is to
maximize the reducer service life, it is natural to set the cost
function as an estimate of the reducer service life. In [1], it is
shown that the expected reducer service life can be computed
by:

L =
λ

|q̇|avg

(
1

|u|avg

)c
(1)

where c and λ are constants that may variate from one
reducer model to another. |u|avg and |̇q|avg are, respectively,
the average torque and the average speed defined by:

|u|avg =

(∑K
k=1 tk|q̇k||uk|c∑K
k=1 tk|q̇k|

) 1
c

|q̇|avg =

∑K
k=1 tk|q̇k|∑K
k=1 tk

where tk is the time interval in the k-th segment of motion,
K is the number of total segments, uk is the motor torque,
and q̇k is the motor speed.

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8682-1/$31.00 ©2016 AACC 2116

B. Path-Constrained Trajectory Planning

The problem of path-constrained trajectory planning is
to change the robot motion speed and acceleration simul-
taneously while keeping the robot path (in either the task
space or the joint space) unchanged [2]. Consider a motion
trajectory q(t) defined in the joint space. We can parametrize
it by introducing a variable s = s(t) ∈ [0, 1] such that
q = fq(s), where the function fq describes the mapping
from the parametric space to the robot joint space. This
mapping allows to perform trajectory planning along the path
of q by re-scheduling the parameter s(t). Since the proposed
trajectory planner is formulated in the parametric space, the
re-planned trajectory will automatically satisfy the path-fixed
constraint. This technique has been used in [3,4,5] with
applications to time-optimal trajectory planning and in [6]
with an application to energy-optimal trajectory planning.

It is of interest to note that as the motion path is un-
changed, it is unnecessary to explicitly introduce singularities
avoidance methods [7] to the planner.

C. Non-increasing Cycling Time

To solve a planning problem with the cost function (1),
it is natural to consider time interval tk as a variable. This
allows us to manipulate the trajectory by controlling the time
intervals of each path segment. However, when using this
formulation, the constraint of non-increasing cycling time
needs to be described explicitly in the optimization problem
as
∑K
k=1 tk ≤ T̄ , where T̄ is an upper bound of the traveling

time. An alternative is to partition the path into K segments
with equal intervals ∆t and to manipulate the trajectory by
controlling the parametric variable s at each path segment.
By doing this, equation (1) can be simplified as:

L =
λ
∑K
k=1 ∆t∑K

k=1 ∆t|q̇k|

(∑K
k=1 ∆t|q̇k|∑K

k=1 ∆t|q̇k||uk|c

)
=

λK∑K
k=1 |q̇k||uk|c

It is important to note that, in the above formulation, the
variables of time interval tk are pruned off from the cost
function. It implicitly means that the cycle time of all
possible choices of trajectories with this expression would
remain unchanged. More precisely, it automatically satisfies
the constraint

∑K
k=1 tk = K∆t ≤ T̄ as long as the designed

time interval ∆t satisfies ∆t ≤ T̄
K .

D. Robot Model in Parametric Space

Similar to many other trajectory planning problems, the
maximum service life trajectory cannot violate robot physical
limits. A popular approach to deal with the robot constraints
is to represent the whole robot dynamics and robot kinematic
in terms of the decision variable s [8]. To be precise, we

have:

q =fq(s) (2)
q̇ =∇fq(s)ṡ (3)

q̈ =∇2fq(s)ṡ
2 +∇fq(s)s̈ (4)

u =M(q)q̈ +G(q) + C(q, q̇)q̇ + F (q̇)

=M (fq(s))
(
∇2fq(s)ṡ

2 +∇fq(s)s̈
)

+G(fq(s))

+ C (fq(s),∇fq(s)ṡ)∇fq(s)ṡ+ F (∇fq(s)ṡ) (5)

where M is the inertia matrix, C is the Coriolis and
centrifugal force matrix, F is the friction force, and G is
the gravity force. With this parametric space robot model,
the constraints of not violating robot physical limits would
simply serve as a set of inequality nonlinear constraints:

u ≤ uk(sk, ṡk, s̈k) ≤ ū
q̇ ≤ q̇k(sk, ṡk) ≤ ¯̇q

where {u, ū} and {q̇, ¯̇q} are motor torque limits and motor
speed limits, respectively. This paper only considers the
speed limits and the torque limits. An extension of con-
sidering acceleration limits can be done without additional
difficulties.

III. OPTIMAL CONTROL BASED TRAJECTORY
PLANNER

Although it is not unusual to consider a trajectory planning
problem as an optimal control problem [9], a key contribution
of this paper is to apply this idea to the parametric space for a
path-constrained planning problem. Namely, we assume that
there is a dynamic model fsc and a continuous control input
signal vt in the parametric space governing the value of the
parameter s in the following way:[

ṡt, s̈t,
...
s t
]

= fT
sc (st, ṡt, s̈t, vt) (6)

By discretizing the model with a sampling interval ∆t, we
have: [

sk+1, ṡk+1, s̈k+1

]
= fT

sd (sk, ṡk, s̈k, vk; ∆t) (7)

With this discrete-time dynamics in the parametric space,
the trajectory planning task becomes the problem of finding
a sequence of control inputs {vk} that drive the parameter
s from zero to one within K-steps. The overall problem is
formulated as follows:

max
sk,ṡk,s̈k,vk

λK∑K
k=1 |q̇k(sk, ṡk)||uk(sk, ṡk, s̈k)|c

subject to ∀k : q̇ ≤ q̇k(sk, ṡk) ≤ ¯̇q

u ≤ uk(sk, ṡk, s̈k) ≤ ū[
sk+1, ṡk+1, s̈k+1

]
= fT

sd (sk, ṡk, s̈k, vk; ∆t)

s1 = 0, sK = 1

Note that this formulation implicitly restricts the parametric
space variable s to be non-decreasing since any reverse action
in the parametric space can only decrease the performance
index.

2117

The discrete-time dynamic model fsd in the parametric
space is a design variable. It describes the relationship
between states {s, ṡ, s̈} and input v at two consecutive time
steps. A simple choice is to set it as a third-order kinematic
model, which has the equation:sk+1

ṡk+1

s̈k+1

 =

1 ∆t ∆t2

2!
0 1 ∆t
0 0 1

︸ ︷︷ ︸

As(∆t)

skṡk
s̈k

︸ ︷︷ ︸
zk

+

∆t3

3!
∆t2

2!
∆t

︸ ︷︷ ︸
Bs(∆t)

vk (8)

For simplicity of notation, we define nonlinear function
Jk and gk as follows:

Jk(zk, vk) :=
1

λK
|q̇k(sk, ṡk)||uk(sk, ṡk, s̈k)|c (9)

gk(zk, vk) :=

q̇k(sk, ṡk)− ¯̇q
−q̇k(sk, ṡk) + q̇
uk(sk, ṡk, s̈k)− ū
−uk(sk, ṡk, s̈k) + u

 (10)

Then, the original optimization problem becomes:

max
z,v

1∑K
k=1 Jk(zk, vk)

subject to ∀k : zk+1 = As(∆t)zk +Bs(∆t)vk

gk(zk, vk) ≤ 0

s1 = 0, sK = 1

where the decision variables z and v are lifted vectors of {zk}
and {vk}, respectively. Now given an arbitrary parametric
interval ∆t, we use the above program to find a sequence
of inputs that drive the parameter s from zero to one in the
parametric space. The resulting trajectory corresponds to the
reducer torques that maximize the robot service life.

This result can be extended to multi-joint robots. By
considering the worst case service life among all robot joints,
we have a max-min problem as follows:

max
z,v

min
i∈I

1∑K
k=1 J

(i)
k (zk, vk)

subject to ∀k : zk+1 = As(∆t)zk +Bs(∆t)vk (11)

∀k, i : g
(i)
k (zk, vk) ≤ 0

s1 = 0, sK = 1

where I = {1, 2, . . . , n} is the set of robot joints.
By solving the optimization problem (11), we have a

discrete-time parametric-space trajectory described by z∗k and
v∗k. The continuous-time trajectory can be reconstructed by:

s∗(t) = s∗k + ṡ∗kτ + s̈∗k
τ2

2!
+ v∗k

τ3

3!

ṡ∗(t) = ṡ∗k + s̈∗kτ + v∗k
τ2

2!
s̈∗(t) = s̈∗k + v∗kτ

where (k−1)∆t ≤ t ≤ k∆t and τ = (t− (k−1)∆t). Then,
substituting the sequence of parameters {s∗(t), ṡ∗(t), s̈∗(t)}
into the robot dynamics (2)-(5) gives us the joint space
trajectory and the corresponding motor torques.

IV. ALGORITHM

The program shown in (11) is not convex due to the non-
convexities in the cost function, the robot dynamics, and the
path parameterization. A possible solution to this problem
is the approximate dynamic programming (ADP) [10]. A
benefit of solving ADP is that it provides the explicit control
policy for all initial condition s1. However, it requires
constructing a cost-to-go function in each step of ADP, and
hence will cost a lot of computation and memory. As the
initial condition s1 is always zero in our application, there is
no need to spend such computation/memory for finding the
complete control policy.

An alternative solution is the sequential quadratic pro-
gramming (SQP) [11,12]. The idea of SQP is to linearize
the constraints with respect to an operation point (z̄, v̄), then
solve an approximate convex program locally by fitting a
quadratic program (QP) [12] around (z̄, v̄). This approximate
QP can be solved directly using commercial optimization
solvers. The solution will be used to update the operation
point and the next iteration of SQP would be performed at
the updated point.

Note that there exist some issues of applying the standard
SQP algorithm to the problem. Namely, computing the
Hessian matrix of the cost function (with a large number
of parametric segments K) can be nontrivial. This paper
therefore provides a better formulation so that the Hessian
matrix in each iteration of SQP can be obtained efficiently.
More precisely, we reformulate the problem so that the new
cost function has a sparse Hessian matrix.

We first consider the single joint case. Note that since
J is a positive function, the maximization problem can
be reformulated as a minimization problem by taking the
reciprocal of the cost function as follows:

∀i : arg max
z,v

1
K∑
k=1

J
(i)
k (zk, vk)

= arg min
z,v

K∑
k=1

J
(i)
k (zk, vk)

By extending this idea to multi-joint robot, we obtain the
following min-max problem:

min
z,v

max
i∈I

K∑
k=1

J
(i)
k (zk, vk)

subject to ∀k : zk+1 = As(∆t)zk +Bs(∆t)vk

∀k, i : g
(i)
k (zk, vk) ≤ 0

s1 = 0, sK = 1

Taking the Lagrangian of the above problem (without con-
sidering the linear constraints) yields:

L(z, v, µ) =

(
max
i∈I

K∑
k=1

J
(i)
k (zk, vk)

)

+
∑
i∈I

K∑
k=1

(µ
(i)
k)Tg

(i)
k (zk, vk)

2118

Fig. 1. A path used to test the life-maximum trajectory planning algorithm. The path is described on the X-Z plane while the end-effector orientation is
fixed along the entire path.

J1

J2

J3

J4

J5

J6

FANUC M-16iB

Tool Center Point

Payload

Fig. 2. Configuration of FANUC M-16iB robot system

where µ is the Lagrange multiplier. Then given an operation
point (z̄, v̄), the SQP subproblem can be obtained by:

min
z,v

∇L(z̄, v̄, µ̄)

[
z̃
ṽ

]
+

1

2

[
z̃
ṽ

]T

∇2L(z̄, v̄, µ̄)

[
z̃
ṽ

]
subject to ∀k : zk+1 = As(∆t)zk +Bs(∆t)vk

∀k, i : g
(i)
k (z̄k, v̄k) +∇g(i)

k (z̄k, v̄k)

[
z̃k
ṽk

]
≤ 0

s1 = 0, sK = 1

where z̃ := z− z̄ and ṽ := v− v̄.
Note that as the values of (z̄, v̄) have been assigned in

each SQP iteration, we can eliminate the maximization term
in the Lagrangian by pre-computing the following quantity
at the beginning of each SQP step:

ī = arg max
i∈I

K∑
k=1

J
(i)
k (z̄k, v̄k) (12)

This results in a modified Lagrangian function:

L(z̄, v̄, µ̄) =

K∑
k=1

J
(̄i)
k (z̄k, v̄k) +

∑
i∈I

K∑
k=1

(µ̄
(i)
k)Tg

(i)
k (z̄k, v̄k)

=

K∑
k=1

(
J

(̄i)
k (z̄k, v̄k) +

∑
i∈I

(µ̄
(i)
k)Tg

(i)
k (z̄k, v̄k)

)
︸ ︷︷ ︸

Lk(z̄k,v̄k,µ̄)

where Lk is a one-step Lagrangian that is a function of
(z̄k, v̄k). Since the original Lagrangian L has been decoupled
into K one-step Lagrangian functions, we are able to take
advantage of the sparsity in Hessian matrix [13] to get the
modified SQP subproblem:

min
z,v

K∑
k=1

(
∇Lk

[
z̃k
ṽk

]
+

1

2

[
z̃k
ṽk

]T

∇2Lk
[
z̃k
ṽk

])
(13)

subject to ∀k : zk+1 = As(∆t)zk +Bs(∆t)vk

∀k, i : g
(i)
k (z̄k, v̄k) +∇g(i)

k (z̄k, v̄k)

[
z̃k
ṽk

]
≤ 0

s1 = 0, sK = 1

This allows us to solve the original problem using K number
of 4 × 4 Hessian matrices rather than using a 4K × 4K
Hessian matrix.

V. CASE STUDIES

The proposed trajectory planning algorithm is applied to
maximize the service life of the FANUC M-16iB robot [14].
The FANUC M-16iB robot is a medium-size robot used for
high-speed applications such as laser cutting and material
handling. It has six joints driven by indirect drive mecha-
nisms. Each joint is equipped with a built-in motor encoder.
The sampling rates of all the sensors and the robot controller
are set to be 1kHz. A payload with a weight of 18.37kg is
mounted at the last joint as the end-effector to mimic the real-
world working conditions. The configuration of the FANUC
M-16iB robot system is shown in Fig. 2.

2119

TABLE I
SPECIFICATION OF THE FANUC M-16iB ROBOT

J1 J2 J3 J4 J5 J6
Maximum Torque (Nm) 1396.5 1402.3 382.7 45.2 44.6 32.5

Maximum Motor Speed (rpm) 4000 4000 5000 5000 5000 5000
Maximum Reducer Speed (rpm) 40 50 60 − − −

Constant c in Service Life Calculation (1) 10/3 10/3 10/3 − − −
Constant λ in Service Life Calculation (1) 8.811× 1013 1.211× 1014 1.127× 1012 − − −

The specifications of the reducer models and robot physi-
cal limits of the FANUC M-16iB robot are listed in Table I.
Note that the joints J4, J5, and J6 are equipped with
customized gear boxes or harmonic drives (instead of typical
RV reducers). Therefore, we did not incorporate the service
life costs of the last three joints into the trajectory planning
algorithm. The motor speed limits and the motor torque
limits for these joints, however, are still considered in the
optimization problem.

The robot tool center point (TCP) path used to test the
proposed life-maximum trajectory planner is illustrated in
Fig. 1. The initial trajectory of the planner is set to have
constant speed in the parametric space. Namely, the velocity
terms {ṡk} are equal to 1

(K−1)∆t , while the position terms
{sk} are such that the difference between the consecutive
variables is 1

K−1 . This initialization is feasible since it
behaves exactly like the original trajectory. An alternative
way to initialize the optimization is to start with a random
point and solve a feasibility problem [15]. The feasibility
problem has at least one solution which is the original
trajectory.

Fig. 3 and Fig. 4 show, respectively, the TCP trajectories
and the joint space trajectories obtained from the initial
setting and the proposed trajectory planning method. Since
the estimated reducer life is proportional to the torque to
the power of 10

3 , it is expected that the trajectory planner
would prefer to minimize the amplitude of the motor torques
whenever the motor speed is nonzero. For example, due to
the gravity effect, the torques required for driving the robot
moving upward would be larger than the torques required for
driving the robot moving downward. Therefore, the trajectory
planner will slow down the first part of the trajectory and
speed up the last part of the trajectory. To clearly illustrate
the effectiveness of the proposed method, a point-to-point
mapping from the initial trajectory to the life-maximum
trajectory is visualized in Fig. 5.

Fig. 6 and Fig. 7 show, respectively, the instantaneous
costs J (i)

k and the cumulative costs
∑
k J

(i)
k for the first three

joints. It is seen that the joint J3 has the largest costs (i.e.,
the shortest expected life) in the initial trajectory. Therefore,
the planner would prefer to minimize the cost for the joint
J3 because it plays the important role of determining the
reducer service life.

Table II compares the reducer service lives between the
initial trajectory and the life-maximum trajectory. As ex-
pected, the proposed trajectory planner improved the worst-
case service life (which happens on the joint J3) by 10.5%.

0 2 4
−0.5

0

0.5

0 2 4
0.5

1

1.5

0 2 4
−0.5

0

0.5

Jo
in

t S
pa

ce
 P

os
iti

on
 (

ra
d)

0 2 4
0

0.5

1
x 10

−15

0 2 4
−2

−1

0

0 2 4
2

3

4

Initial Trajectory Life−maximum Trajectory

J1

Time (sec)

J6

J2

J3 J4

J5

Fig. 3. Joint space trajectory references of the initial trajectory (blue solid
line) and the life-maximum trajectory (red dot line)

TABLE II
COMPARISON OF EXPECTED REDUCER SERVICE LIVES (UNIT: KHOURS)

J1 J2 J3
Initial Trajectory 1716.4 203.4 22.9

Life-maximum Trajectory 658.7 126.6 25.3

However, the service lives for the joints J1 and J2 are
degraded as a trade-off. Note that since the optimizer tends
to improve the service life only for the joint J3 (the worst
one), it will not take into account the compromise made by
the joints J1 and J2. It may not be a good design when the
average life of all robot joints is an important issue. In this
case, it is possible to replace the cost function in (11) with
the following one to address the problem:

max
z,v

∑
i∈I

(
K∑
k=1

J
(i)
k (zk, vk)

)−1

Table III compares the CPU times of solving the program
(11) with the standard SQP and the SQP with modified
subproblem (13). It is seen that the modified program leads to
substantial savings in the computation by taking advantage of
the sparsity in the Hessian matrix. More precisely, the com-
putational time of proposed formulation increases linearly
with the number of partition points K. This result follows
from the fact that the Hessian matrix in the modified program
can be computed by K small sized Hessian matrices.

2120

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

Initial Trajectory Life-maximum Trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

C
ar

te
is

an
 S

pa
ce

 P
os

iti
on

 (
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

0

1

2

Y

X

Z

Fig. 4. TCP Cartesian space position references of the initial trajectory
(blue solid line) and the life-maximum trajectory (red dot line)

Fig. 5. A point-to-point comparison of TCP Cartesian space trajectory
references

TABLE III
A QUANTITIVE COMPARISON OF DIFFERENT SQP FORMULATIONS

(UNIT: SEC)

Standard SQP SQP with (13)
K = 10 42.1 9.5
K = 20 184.0 21.2
K = 30 404.2 27.7
K = 50 1185.6 51.3
K = 100 3615.2 103.1

0 0.5 1 1.5 2 2.5 3 3.5 4

×10
-5

0

2

4

6

Initial Trajectory Life-maximum Trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4In
s
ta

n
ta

n
e
o
u
s
 C

o
s
t

×10
-4

0

1

2

3

Time (sec)

0 0.5 1 1.5 2 2.5 3 3.5 4

×10
-4

0

2

4

6

J2

J3

J1

Fig. 6. Instantaneous costs of the initial trajectory (blue solid line) and the
life-maximum trajectory (red dot line)

0 0.5 1 1.5 2 2.5 3 3.5 4

×10
-3

0

1

2

Initial Trajectory Life-maximum Trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4C
u
m

u
la

ti
v
e
 C

o
s
t

0

0.005

0.01

Time (sec)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

J2

J1

J3

Fig. 7. Cumulative costs of the initial trajectory (blue solid line) and the
life-maximum trajectory (red dot line)

VI. CONCLUSIONS

This paper presented a path-constrained trajectory plan-
ning method for optimizing the robot service life. The trajec-
tory planner was formulated as an optimization problem and
was solved by a modified version of SQP. The complexity of
the proposed optimization solver is linear with respect to the
trajectory length. Experimental results on FANUC M16iB
robot showed that the proposed method can improve the
expected worst-case service life by approximately 10%.

REFERENCES

[1] (Feb. 2015) Nabtesco RV-C series. [Online]. Available: http:
//www.nabtescomotioncontrol.com/pdfs/RV-Cseries.pdf

2121

[2] D. Costantinescu and E. Croft, “Smooth and time-optimal trajectory
planning for industrial manipulators along specified paths,” Journal of
robotic systems, vol. 17, no. 5, pp. 233–249, 2000.

[3] Z. Shiller and S. Dubowsky, “On the optimal control of robotic
manipulators with actuator and end-effector constraints,” in Robotics
and Automation. Proceedings. 1985 IEEE International Conference
on, vol. 2, Mar 1985, pp. 614–620.

[4] K. Shin and N. D. McKay, “Minimum-time control of robotic ma-
nipulators with geometric path constraints,” Automatic Control, IEEE
Transactions on, vol. 30, no. 6, pp. 531–541, Jun 1985.

[5] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimiza-
tion approach,” Automatic Control, IEEE Transactions on, vol. 54,
no. 10, pp. 2318–2327, Oct 2009.

[6] K. Paes, W. Dewulf, K. V. Elst, K. Kellens, and P. Slaets, “Energy
efficient trajectories for an industrial ABB robot,” in the 21st CIRP
Conference on Life Cycle Engineering, 2014, pp. 105 – 110.

[7] T. Yoshikawa, “Analysis and control of robot manipulators with
redundancy,” Robotics research: the first international symposium, pp.
735–747, 1984.

[8] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-
bridge University Press, 2006.

[9] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “An
optimal-control-based framework for trajectory planning, threat assess-
ment, and semi-autonomous control of passenger vehicles in hazard
avoidance scenarios,” International Journal of Vehicle Autonomous
Systems, vol. 8, no. 2-4, pp. 190–216, 2010.

[10] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Athena Scientific, 2000.

[11] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
numerica, vol. 4, pp. 1–51, 1995.

[12] J. Nocedal and S. Wright, Numerical Optimization, ser. Springer Series
in Operations Research and Financial Engineering. Springer New
York, 2006.

[13] J. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, 2nd ed. Society for Industrial and Applied
Mathematics, 2010.

[14] (Feb. 2015) FANUC M-16iB/T series. [Online]. Available: http://www.
autocells.com/usr/docs/FANUCPDFDatasheets/FANUCM-16iBT.pdf

[15] P. Spellucci, “A new technique for inconsistent qp problems in the
sqp method,” Mathematical Methods of Operations Research, vol. 47,
no. 3, pp. 355–400, 1998.

2122

